# Coherent electron Cooling Proof of Principle

Instrumentation

**Toby Miller** 

MAC Review 8-10 December 2014



a passion for discovery



### **Outline**

#### Introduction

Layout, Detailed overviews

**Electron Beam Parameters** 

#### **Electron Beam Instrumentation**

### **Sub-system descriptions**

**Current Monitors** 

**Position Monitors** 

**Profile Monitors** 

**Emittance Measurement** 

**Energy Spread Measurement** 

**Loss Monitors** 

### **FEL IR Instrumentation**

Intensity measurement

Transverse Profile measurement

**Spectral Analysis** 

#### **RHIC Instrumentation**

**Wall Current Monitor** 

BPM's, Schottky

### **Summary**

# Installation location RHIC Sector 2









### **CeC PoP Facility Layout**









### **Electron Beam Transport Overview**

### **RHIC Sector 2 IR**

RHIC 40GeV/n AU and 22MeV electron Merger location



### **Goal of Diagnostics:**

Electron trajectory alignment for lasing

"Proof of principle"
Minimal but sufficient diagnostics provided







### Layout for Phases 1 & 2

- Phase 1: Test of the Gun & SRF cavity, measuring dark current with
  - Profile Monitor
  - BLMs
- Phase 2: Test with cathode & laser to produce beam, measuring with
  - BPMs
  - Profile Monitors
  - BLMs
  - ICT (Current Monitor)
  - Faraday Cup
  - Emittance measured with multi-slit mask and Profile Monitor

### **Instrumentation:**

ICT = 1

BPM = 2

Profile Mon = 2

Slit Mask = 1

PMT BLM = 6

Faraday Cup = 1









### **Layout of Phase 2.1**

 Addition of the 5-Cell and dog-leg injection line, repeat phase 1 measurements with higher energy beam.

Test independent of RHIC operations.



### **Instrumentation:**

ICT = 2
BPM = 4
Profile Mon = 4
Slit Mask = 1
PMT BLM = 8
PIN Diode BLM = 1
Faraday Cup = 2





**BPM #3** 

Faraday

Cup

Profile Monitor #3



Solenoids



### **Layout of Additions for Phase 3**









### **Electron Beam Parameters**

| <b>ELECTRON BEAM PAR</b> | AMETERS               |
|--------------------------|-----------------------|
| Energy                   | 2 & 22 MeV            |
| Charge per bunch         | 0.5 – 5 nC            |
| Electrons per bunch      | 3 – 6x10 <sup>9</sup> |
| E-beam current (1nC)     | 78 µA                 |
| Repetition rate          | 78 kHz                |
| RMS Normalized Emittance | < 5 mm•mrad           |
| RMS energy spread        | <1x10 <sup>-3</sup>   |
| RMS bunch length         | 10 psec               |
| RMS transverse beam size | 1 mm                  |
| E-beam power             | 1.7 kW                |
|                          |                       |

## Design and installation challenges due to SC gun and Linac:

- •10<sup>-11</sup> torr vacuum
- •200C bake
- •Particulate processing, class 100 near SC cavities







### **Instrumentation Parameters**

| Measurement                                             |           | Accuracy                       | Instrument<br>Resolution/<br>Accuracy | Method                                                      | Notes                                                                                                        |  |  |
|---------------------------------------------------------|-----------|--------------------------------|---------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--|--|
| 2 to 22 MeV e-beam transport instrumentation parameters |           |                                |                                       |                                                             |                                                                                                              |  |  |
| Electron Beam                                           | Position  | 30μm/<br>100μm                 | 10μm/<br>50μm                         | BPMs (15mm buttons)<br>Dual plane stations                  | Reuse Libera's from ERL, these have 703MHz BP filters, averaged data, not bunch-by-bunch                     |  |  |
| Cooling Section<br>Beam Position                        | Electrons | 30μm/<br>100μm                 | 10μm/<br>50μm                         | BPMs with <b>SHARED</b> 15mm buttons<br>Dual plane stations | BNL Zync Electronics VME boards ring <b>700MHz</b> front-end filter for averaging over many electron bunches |  |  |
|                                                         | lons      | 100μm/<br>100μm                | 10μm/<br>50μm                         | BPMs with <b>SHARED</b> 15mm buttons<br>Dual plane stations | BNL Zync Electronics VME boards ring <b>39MHz</b> front-end filter for averaging over many ion bunches       |  |  |
| Transverse P                                            | rofile    | 100μm<br>(10% of 1<br>mm beam) | 50μm                                  | YAG screen & CCD<br>Measured at low power                   | 25mm YAG:Ce crystal with 2MP CCD GigE camera for 39px/mm resolution                                          |  |  |
| Bunch Cha                                               | rge       | 5%/1%                          | 1-10 pC<br>noise floor                | Integrating Current Transformer                             | Bergoz ICT, BCM-IHR. Expect bunch charge 0.5-5nC 0.1 – 7μs integration window @ 10kHz max rep rate           |  |  |
| Beam Curr                                               | ent       | 1μΑ                            | (TBD)                                 | Dump Faraday Cup                                            | Isolated dump as a Faraday Cup.                                                                              |  |  |
| Beam Lo                                                 | ss        | 10μΑ<br>Loss limit             | 1μΑ                                   | PMT detectors with<br>JLAB VME electronics                  | Designed for a sensitivity of 0.1 – 6 μA of beam loss and an integrated trip limit of 10 – 60 μA•ms          |  |  |
| Emittance                                               |           | 10%                            | 10%                                   | Plunging multi-slit mask & Profile<br>Monitor               | Two position mask, Horizontal & Vertical slits                                                               |  |  |
| Energy Spread                                           |           | <1x10 <sup>-3</sup>            | 1% of<br>max Δp/p                     | YAG in dispersive section                                   | Based on 1mm beam size and 4X horizontal beam size growth under max Δp/p                                     |  |  |







### **Outline**

#### **Introduction**

Layout, Detailed overviews

**Electron Beam Parameters** 

#### **Electron Beam Instrumentation**

### **Sub-system descriptions**

**Current Monitors** 

**Position Monitors** 

**Profile Monitors** 

**Emittance Measurement** 

**Energy Spread Measurement** 

**Loss Monitors** 

### **FEL IR Instrumentation**

Intensity measurement

Transverse Profile measurement

**Spectral Analysis** 

#### **RHIC Instrumentation**

Wall Current Monitor

BPM's, Schottky

### **Summary**







### **Integrating Current Transformer**

For making periodic measurements of bunches or bunch trains from 0.1us to 7µs long, located downstream of the gun, and at dump.

### Bergoz ICT-CF6-60.4-070-05:1-H-UHV-THERMOE

Integrating type, In-flange CT

Bergoz BCM-IHR electronics

10kHz option

Background Subtract

Noise floor 1-10 pC Calibrated

#### Mechanical details:

60.4mm ID

40mm axial length

Rad-Hard option

Bakeable to 180C

Separate bake-out zone

Internal TC, type-E

#### Requirements for bunch charge at 0.5-5nC:

5% accuracy 1% resolution



## Signal processing timing diagram: Gate width <0.1us up to >7us









### **Beam Position Monitors – Pick-ups & Electronics**

Dual-plane button pick-ups

11 locations (2 at 2MeV, 9 at 22MeV)

15 mm diameter molybdenum button's

MPF Inc PN: A9111-2-CF

SMA Connector, SS housing & 4.5" CF flanges







BPM 15mm button

BPM Pick-up housing

### **BNL Zync electronics VME board:**



#### VME Form Factor

Use RHIC Controls Infrastructure

#### Configurable RF Section

Hadron or Electron Beam Options

#### 4 x 400MSPS A/D Converters

2 Planes of Measurement / Board

#### Integrated Front End Computer

FEC & FPGA on Single Chip (Zynq)

#### Ethernet Connectivity (x2)

- Controls Network
- High Speed Interface for Feedback

### Simulations show strong signals





### Test results below at the ATF with buttons showed better than 100um accuracy and 10um precision









### **Transverse Profile Monitor**

### **BNL** Design

- YAG:Ce crystal, (100µm thick)
- Normal to beam; copper mirror behind crystal
- 25mm aperture
- Two position pneumatic plunger
- 2MP GigE camera (model "Manta" by AVT)
- 50mm fixed lens
- Tested to better than 50µm optical resolution
- Actuator separable from UHV linear motion feed through
- Laser focus assist
  - 405nm laser injected through dichroic beam splitter to excite YAG for focusing
  - 450nm Longpass edge filter protects CCD from backscattered 405nm light.
- Alignment laser for downstream multi-slit uses backside mirror on YAG holder.











### **Emittance Slit Measurement**

### - Transfer from ERL (need new mask)

- Low Power Operations Only
- Positioned 0.35 m upstream of profile monitor
- Tungsten Slit mask, optimized expected emittance:
  - 10 slits, 2mm separation, 200µm width in 1.5mm thick.
- New Dual axis design for Horizontal & Vertical measurement
- Replaces single axis mask originally installed.









Dual Station Actuator retrofitted for new dual axis mask.

#### **ANALYSIS:**

An algorithm was developed for analyzing the image from a multi-slit mask for emittance measurement.

Future plans are to automate the image analysis for on-line processing and data logging.















### **Energy Spread Measurements**

- Max. Energy Spread: 5x10<sup>-4</sup>
- Beam Size (d): 1mm (dia.)
- Dispersion after dipole & quad
- $\sigma_{\delta-H}$  expected to be 4mm in dog-leg section
- Δ Beam Size <sub>H</sub>: (4 1 mm) x 34.4px/mm
   ≈ 100px
  - $\sigma_{\delta-H}$  spread over 100 pixels
  - → Resolution: 1% of max Δp/p

# Image of 25.4mm YAG as projected onto CCD



- Camera resolution: 2MP
  - 1292 X 964
     pixels

$$(px_h X px_v)$$

• Pitch<sub>YAG</sub> = 
$$W_{CCD}/px_v$$







### **Loss Monitors**

### **Beam Loss Monitors**

- PMT Detector (similar to JLAB-CEBAF, FEL)
- (Hamamatsu R11558 PMT)
- Fast (<<1us), HV tunable for sensitivity adjustments</li>
- 50dB DR (5nA 100uA from tube)
- Limited coverage, small cross section



- The new version of BLM electronics developed at JLAB
- · Dual response:
  - · Linear response for beam loss protection
  - Logarithmic response for instrumentation
- Two 8-ch modules installed support 14 PMT BLMs
- Designed for sensitivity to  $0.1-6\mu A$  beam loss and  $10-60~\mu A$ • $\mu s$  integrated trip limit.
- Controls integration is underway.





- Provide both machine protection and diagnostic functions
- Instantaneous readback of beam loss.
- 16 bit digital output for integrating and logarithmic signals.
- Fast response, << 1 μs response time for integrating, 10 nA<sup>2</sup> for log.
- Wide dynamic range (>50 dB) for logarithmic signals.
- Built-in self test and onboard signal injection.
- FPGA controlled.
- Local data buffer for integrating and logarithmic signals.
- VME interface and fully integrated into EPICS.
- Pulse beam measurement and continuous monitoring.
- Low cost (≤\$100 per channel).

New Beam Loss Monitor for 12GeV Upgrade J. Yan, K. Mhoney, ICALEPCS 2009a

### **Infrared Camera (FLIR A310)**

Check for beam pipe heating, or losses other detectors

can't see.

Remote image display & storage, Ethernet communication.





### **Outline**

#### **Introduction**

Layout, Detailed overviews

**Electron Beam Parameters** 

#### **Electron Beam Instrumentation**

### **Sub-system descriptions**

**Current Monitors** 

**Position Monitors** 

**Profile Monitors** 

**Emittance Measurement** 

**Energy Spread Measurement** 

**Loss Monitors** 

### **FEL IR Instrumentation**

Intensity measurement

Transverse Profile measurement

**Spectral Analysis** 

#### **RHIC Instrumentation**

Wall Current Monitor

BPM's, Schottky

### **Summary**







### Infrared Diagnostics Layout for Wiggler Light

### IR Diagnostics include:

- Power (over two ranges)
- Transverse profile
- Spectral Analysis



Simulations predict a 40mm radiation pattern at 15m from the FEL.

| Wiggler Parameters           | Value                       |
|------------------------------|-----------------------------|
| Length (3 sections)          | 3 x 2.8 m                   |
| Period $(\lambda_u)$ / poles | 4 cm / 3 x 60 + 2.5 (match) |
| Strength (K)                 | 0.50                        |
| Wavelength                   | 14 μm                       |
| Optical Power                | 250 nW – 250 mW             |

Permanent magnet wigglers (three) built by the Budker Institute, 32mm gap, 0.134T peak filed, 60 poles over principle length of 2.5m (+2.5 matching poles, over 30cm)





December 8-10, 2014



NATIONAL LABORATORY

18

### Wiggler Light Intensity Measurement

Change in the wiggler light intensity is a direct indication of FEL amplification, necessary for coherent cooling.

### HBW Low Intensity IR Photodetector:

- Used to resolve variations from pulse to pulse in the 78kHz beam
- Sensitivity as low as 1μW over 2 14μm
- BW up to 1MHz
- TE cooled (HgCd)Te detector under GaAs lens
- May employ lock-in amplifier to improve S/N ratio at 78kHz

#### Thermal Power sensor

- Used to measure average power in CW mode (T<sub>resp</sub> = 1.8s)
- 10µW 3W, over 3 selectable ranges
- Sensitivity over 0.19 20µm through a 9.5mm aperture
- 1.8 second response time











### Wiggler Light Transverse Profile

The profile of the FEL radiation beam is a good indication of the position of the electron beam and is expected to exhibit signs of when the electron and ion beams overlap. **Two methods of instrumentation:** 

### Pyrocam™ IV sensor array:

- Pyroelectric crystal integrating sensor
- 100nm 100µm sensitivity
- 320 x 320 pixels on a 25 x 25 mm sensor
- Responds to short pulses, uses a chopper in CW mode

#### Scanned Profile Measurement

- Low cost motorized stage for photodetector with pinhole mask
- Fast response of the photodetector provides full scan in ~30sec.
- Existing technique used at eLens for direct eBeam transverse profile scan

Pyrocam<sup>™</sup> IV with pyroelectric sensor array





Sample image benefits from the 100 kilo-pixels over 1 in<sup>2</sup> sensor yields a spatial resolution of 12.8 pixels/mm











Example image reconstruction & analysis from X-Y array of intensity data points (courtesy of RHIC Electron Lens Pinhole Scanning Profiler)







### Wiggler Light Spectral Analysis

We expect to see variations in the spectral line width during the cooling process.

- Acton VM-504 Spectrometer:
  - Made by Princeton Instruments
  - 75-groove/mm grating, centered around 14µm wavelength
- For spectral analysis over the transverse plane:
  - Princeton's imaging spectrograph, model SCT 320
  - Zero astigmatism yields high resolution

Acton VM-504 Spectrometer from Princeton Instruments.











### **Outline**

#### Introduction

Layout, Detailed overviews

**Electron Beam Parameters** 

#### **Electron Beam Instrumentation**

### **Sub-system descriptions**

**Current Monitors** 

**Position Monitors** 

**Profile Monitors** 

**Emittance Measurement** 

**Energy Spread Measurement** 

**Loss Monitors** 

### **FEL IR Instrumentation**

Intensity measurement

Transverse Profile measurement

**Spectral Analysis** 

#### **RHIC Instrumentation**

**Wall Current Monitor** 

BPM's, Schottky

#### **Summary**







### RHIC Ion Diagnostics for CeC PoP

- 1. <u>Align one ion beam through the Cooler</u>

  Use existing RHIC instrumentation routinely used for aligning colliding ion beams
  - "DX BPMs" are located upstream and downstream of the CeC beam line. 10's of microns resolution, average orbit
  - Orbit stability feedback loops ensure beam position during the store.
- 2. Measure Cooling Progress

Use methods developed for successful Stochastic Cooling

**Schottky Pick-ups** 

Wall Current Monitor (see next slide) 3KHz -6GHz BW

Anti-cooling: See when things go bad IPM's will see transverse effects Watch loss monitors carefully



Longitudinal Schottky spectra at 4 GHz before and after stochastic cooling. Blue is reference, red is narrowed spectrum after cooling. M. Brennan EPAC06 THPCH078







### RHIC Wall Current Monitor Simulation for CeC

### **RHIC Wall Current Monitor Simulations (ideal conditions)**

Au 40GeV/n, 1.5ns rms bunch length sigma, 10<sup>9</sup> ions/bunch 22MeV electron beam, 20ps rms, locked to center of ion bunch





## Wall Current Monitor Simulated frequency response









### **Summary**

CURRENTLY, all instrumentation for phase 1 (less loss monitors & Emittance Slit) is installed and online supporting the search for first beam.

#### **OPEN ISSUES include:**

- Wiggler IR light diagnostics:
  - profile & spectrum requirements are not yet defined
  - compounded by high cost solutions

#### > BPM's:

- new electronics design with custom RF front-ends
- ability to distinguish between ion & electrons on shared pick-up electrodes

LOOKING FORWARD, cables pulled for phases 2.1 & 3 are 90% complete and components for both phases are being assembled for installation along with loss monitors & Emittance slit for phase 2.1 in early 2015 and phase 3 in summer 2015.

We can apply experience gained at:

Energy Recovery LINAC for electron beam commissioning. RHIC to help demonstrate coherent electron cooling for the first time.





